Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Brain Pathol ; : e13261, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

2.
Mol Cancer Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639925

RESUMO

Leptomeningeal metastasis (LM) is a devastating complication of advanced non-small cell lung cancer (NSCLC). Diagnosis and monitoring of LM can be challenging. Extracellular vesicles (EVs) microRNAs (miRNAs) have become a new noninvasive diagnostic biomarker. The purpose of this study was to examine the clinical value and role of EVs miRNAs in NSCLC-LM. According to next-generation sequencing (NGS), miRNAs with differential expression of EVs in serum of NSCLC patients with LM and non-LM were detected to find biological markers for the diagnosis of LM. Cellular and in vivo experiments were conducted to explore the pathogenesis of EVs miRNA promoting LM in NSCLC. In the present study, we first demonstrated the serum level of EV-associated miR-374a-5p in patients with LM of lung cancer was much higher than that in patients without LM and was correlated with the survival time of patients with LM. Further studies showed that EVs miR-374a-5p efficiently destroys tight junctions and the integrity of the cerebral microvascular endothelial cell barrier, resulting in increased blood-brain barrier (BBB) permeability. Mechanistically, miR-374a-5p regulates the distribution of ZO-1 and occludin in endothelial cells by targeting ADD3, increasing vascular permeability and promoting LM. Implications: These results suggest that serum NSCLC-derived EVs miR-374a-5p is involved in premetastatic niche formation by regulating the permeability of BBB to promote NSCLC-LM, and can be used as a blood biomarker for the diagnosis and prognosis of NSCLC-LM.

3.
Front Pediatr ; 12: 1378786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590767

RESUMO

Background: Enhanced recovery after surgery (ERAS) has been widely used in adult surgery. However, few studies have reported the efficacy of ERAS in paediatric patients with Meckel's diverticulum (MD), the aim of the study was to prospectively evaluate the safety and efficacy of ERAS in treating MD. Methods: A prospective randomised controlled study of children with MD admitted to our hospital from Jan 1, 2021 to Dec 31, 2023 were conducted, we developed and implemented an ERAS program for this patients. All cases were strictly selected according to the inclusion and exclusion criteria. Among these patients, they were randomly assigned to the ERAS group or the traditional (TRAD) group with random number table row randomization. The main observational indicators were operation time, intraoperative hemorrhage, FLACC pain scale results on 2 h, 6 h, 12 h, 24 h after surgery, length of postoperative stay (LOPS), time to first defecation, time to first eating after surgery, time to discontinuation of intravenous infusion, total treatment cost, incidence of postoperative complications, 30-day readmission rate and parental satisfaction rate. Results: A total of 50 patients underwent Meckel's diverticulectomy during this period, 7 patients were excluded, 23 patients were assigned to the ERAS group and 20 patients were assigned to the TRAD group. There were no significant differences in demographic data and operation time, intraoperative hemorrhage. The FLACC pain scale results on 2 h, 6 h, 12 h, 24 h after surgery were significantly lower in the ERAS group. The LOPS was 6.17 ± 0.89 days in the ERAS group and 8.30 ± 1.26 days in the TRAD group, resulting in a significantly shorter LOPS in ERAS group. ERAS could also reduce the first postoperative defecation time, the time to first eating after surgery and the time to discontinuation of intravenous infusion. The treatment cost was decreased in the ERAS group. The rate of complications and 30-day readmission were not significantly different between the two groups. Conclusions: In this single-center study, the ERAS protocol for patients with MD requiring surgery was safe and effective.

4.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478112

RESUMO

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Assuntos
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacologia , Klebsiella pneumoniae/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Testes de Sensibilidade Microbiana
5.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429276

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Citocinas , Transcriptoma , Lúpus Eritematoso Sistêmico/genética , Células Produtoras de Anticorpos
6.
Mol Cancer ; 22(1): 179, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932766

RESUMO

BACKGROUND: Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS: High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS: CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS: CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O1 , Proteína HMGB1 , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Camundongos Nus , MicroRNAs/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Proteína Forkhead Box O1/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Angew Chem Int Ed Engl ; 62(49): e202302545, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37856619

RESUMO

α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,ß- and ß,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.

8.
Clin Nucl Med ; 48(10): e477-e479, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682615

RESUMO

ABSTRACT: A 44-year-old man who presented with progressive right limb weakness was diagnosed with ischemic stroke. He was referred for 18F-DPA-714 PET/CT for evaluation of the disease. 18F-DPA-714 PET/CT showed increased uptake of the intracranial thrombus. This DPA-714-avid thrombus highly suggested the involvement of immune cells in the extension of the clot resulting in neurological deterioration. This present case suggested that 18F-DPA-714 PET might be a promising tracer in visualizing thromboinflammation in vivo.


Assuntos
Acidente Vascular Cerebral , Trombose , Masculino , Humanos , Adulto , Tromboinflamação , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Acidente Vascular Cerebral/diagnóstico por imagem
9.
Res Sq ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461641

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

10.
Org Lett ; 25(31): 5800-5805, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37498148

RESUMO

Although the transition-metal-catalyzed vinylations of amines and alcohols via the additions to alkynes have been well developed, the selective vinylations of amino alcohols have been merely investigated. Herein, we report the gold-catalyzed divergent additions of trans-2-butene-1,4-amino alcohols' N-H and O-H groups to alkynes. The allyl enamine and allyl vinyl ether adducts then underwent a cascade (Aza-) Claisen rearrangement/cyclization sequence, furnishing the functionalized dihydropyrrole and dihydrofuran products.

11.
Org Lett ; 25(23): 4350-4354, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37272670

RESUMO

Herein, a new series of catalyst-controlled divergent cycloisomerizations of indole-tethered alkynes was developed utilizing readily available, versatile, and flexible N-propargyl indoles as substrates and BrettPhosAuNTf2 and PtCl4 as catalysts, where the chemodivergency was attributed to both the steric and electronic nature of the catalysts. A broad spectrum of N-propargyl indoles could be employed in this protocol, enabling the divergent synthesis of a library of 9H-pyrrolo[1,2-a]indoles and 4H-pyrrolo[3,2,1-ij]quinolines. Moreover, the reactions could be performed at mmol scales.


Assuntos
Indóis , Morfinanos , Catálise , Ciclização
12.
World J Gastroenterol ; 29(22): 3482-3496, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389236

RESUMO

BACKGROUND: Due to the poor prognosis of gastric cancer (GC), early detection methods are urgently needed. Plasma exosomal circular RNAs (circRNAs) have been suggested as novel biomarkers for GC. AIM: To identify a novel biomarker for early detection of GC. METHODS: Healthy donors (HDs) and GC patients diagnosed by pathology were recruited. Nine GC patients and three HDs were selected for exosomal whole-transcriptome RNA sequencing. The expression profiles of circRNAs were analyzed by bioinformatics methods and validated by droplet digital polymerase chain reaction. The expression levels and area under receiver operating characteristic curve values of plasma exosomal circRNAs and standard serum biomarkers were used to compare their diagnostic efficiency. RESULTS: There were 303 participants, including 240 GC patients and 63 HDs, involved in the study. The expression levels of exosomal hsa_circ_0079439 were significantly higher in GC patients than in HDs (P < 0.0001). However, the levels of standard serum biomarkers were similar between the two groups. The area under the curve value of exosomal hsa_circ_0079439 was higher than those of standard biomarkers, including carcinoembryonic antigen, carbohydrate antigen (CA)19-9, CA72-4, alpha-fetoprotein, and CA125 (0.8595 vs 0.5862, 0.5660, 0.5360, 0.5082, and 0.5018, respectively). The expression levels of exosomal hsa_circ_0079439 were significantly decreased after treatment (P < 0.05). Moreover, the expression levels of exosomal hsa_circ_0079439 were obviously higher in early GC (EGC) patients than in HDs (P < 0.0001). CONCLUSION: Our results suggest that plasma exosomal hsa_circ_0079439 is upregulated in GC patients. Moreover, the levels of exosomal hsa_circ_0079439 could distinguish EGC and advanced GC patients from HDs. Therefore, plasma exosomal hsa_circ_0079439 might be a potential biomarker for the diagnosis of GC during both the early and late stages.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Detecção Precoce de Câncer , RNA Circular , Antígeno CA-19-9 , Biologia Computacional
14.
Front Cell Dev Biol ; 11: 1171637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215091

RESUMO

Protein reabsorption in renal proximal tubules is essential for maintaining nutrient homeostasis. Renal proximal tubule-specific gene knockout is a powerful method to assess the function of genes involved in renal proximal tubule protein reabsorption. However, the lack of inducible renal proximal tubule-specific Cre recombinase-expressing mouse strains hinders the study of gene function in renal proximal tubules. To facilitate the functional study of genes in renal proximal tubules, we developed an AMN CreERT2 knock-in mouse strain expressing a Cre recombinase-estrogen receptor fusion protein under the control of the promoter of the amnionless (AMN) gene, a protein reabsorption receptor in renal proximal tubules. AMN CreERT2 knock-in mice were generated using the CRISPR/Cas9 strategy, and the tissue specificity of Cre activity was investigated using the Cre/loxP reporter system. We showed that the expression pattern of CreERT2-mEGFP in AMN CreERT2 mice was consistent with that of the endogenous AMN gene. Furthermore, we showed that the Cre activity in AMN CreERT2 knock-in mice was only detected in renal proximal tubules with high tamoxifen induction efficiency. As a proof-of-principle study, we demonstrated that renal proximal tubule-specific knockout of Exoc4 using AMNCreERT2 led to albumin accumulation in renal proximal tubular epithelial cells. The AMN CreERT2 mouse is a powerful tool for conditional gene knockout in renal proximal tubules and should offer useful insight into the physiological function of genes expressed in renal proximal tubules.

15.
Nat Commun ; 14(1): 1388, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941260

RESUMO

Anti-dsDNA antibodies are pathogenically heterogeneous, implying distinct origins and antigenic properties. Unexpectedly, during the clinical and molecular characterization of autoantibodies to the endonuclease DNase1L3 in patients with systemic lupus erythematosus (SLE), we identified a subset of neutralizing anti-DNase1L3 antibodies previously catalogued as anti-dsDNA. Based on their variable heavy-chain (VH) gene usage, these antibodies can be divided in two groups. One group is encoded by the inherently autoreactive VH4-34 gene segment, derives from anti-DNase1L3 germline-encoded precursors, and gains cross-reactivity to dsDNA - and some additionally to cardiolipin - following somatic hypermutation. The second group, originally defined as nephritogenic anti-dsDNA antibodies, is encoded by diverse VH gene segments. Although affinity maturation results in dual reactivity to DNase1L3 and dsDNA, their binding efficiencies favor DNase1L3 as the primary antigen. Clinical, transcriptional and monoclonal antibody data support that cross-reactive anti-DNase1L3/dsDNA antibodies are more pathogenic than single reactive anti-dsDNA antibodies. These findings point to DNase1L3 as the primary target of a subset of antibodies classified as anti-dsDNA, shedding light on the origin and pathogenic heterogeneity of antibodies reactive to dsDNA in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/genética , Autoanticorpos , Anticorpos Antinucleares/genética , DNA/metabolismo , Anticorpos Monoclonais , Endodesoxirribonucleases/genética
16.
Biol Res ; 56(1): 5, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732854

RESUMO

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Caspases , Fibrose , Glucose , Inflamação , Interleucina-18 , NF-kappa B/metabolismo , Piroptose , RNA Interferente Pequeno
17.
Apoptosis ; 28(3-4): 471-484, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574090

RESUMO

Circular RNAs (circRNAs) are a specialized circular structure, are deregulated in cancers and play essential roles in biological processes involved in tumor progression. However, the mechanism by which circRNAs affect lung tumorigenesis and progression remains largely unexplored. To investigate the role of circRNA in lung cancer, circRNA expression profile was screened by bioinformatics analysis. The levels of circTAB2, miR-3142, and GLIS family zinc finger 2 (GLIS2) were measured by quantitate real-time (qRT-PCR) or western blot. Cell proliferation, apoptosis, migration and invasion were detected by EdU, flow cytometry, and transwell assays, respectively. Bioinformatics, western blot, RIP, pull down, dual luciferase reporter and rescue experiments were used to verify the direct relationship between miR-3142 and circTAB2 or GLIS2. The xenograft assays were used to assess the role of circTAB2 in vivo.CircTAB2 exhibited low expression in cancer tissues. Gain and loss-of-function assays indicated that circTAB2 could inhibit cell proliferation, migration and invasion. Functional studies revealed that circTAB2 acted as a miRNA sponge, directly interacted with miR-3142 and consequently regulated GLIS2 /AKT. Taken together, circTAB2 serves as an inhibitory role in lung cancer through a novel circTAB2 /miR-3142 /GLIS2 /AKT pathway and could be exploited a novel marker in lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
18.
Cancer Med ; 12(6): 6623-6636, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36394081

RESUMO

BACKGROUND: The 8th tumor-node-metastasis (TNM) classification of the American Joint Committee on Cancer (AJCC) can be used to estimate the prognosis of gastric neuroendocrine tumor (gNET) and gastric neuroendocrine carcinoma (gNEC) patients but not gastric neuroendocrine neoplasms (gNENs). METHODS: First, in the SEER (training) dataset, a TNMG system was built by combining the WHO G grade (G1-4; NEC grouped into G4) with the 8th AJCC T (T1-4), N (N0-1), and M (M0-1) stage, which was then validated in a Chinese (validation) cohort. RESULTS: In all, 2245 gNENs cases from the training dataset and 280 cases from the validation dataset were eligible. The T stage, M stage, and G grade were independent prognostic factors for OS in both datasets (all p < 0.05). The TNMG staging system demonstrated better C-index for predicting OS than the 8th AJCC TNM staging system in both the training (0.87, 95%CI: 0.86-0.88 vs. 0.79, 95%CI: 0.77-0.81) and validation (0.77, 95%CI: 0.73-0.80 vs. 0.75, 95%CI: 0.71-0.79) datasets. The AUC of the 3-year OS for the TNMG staging system was 0.936 and 0.817 in the SEER and validation dataset, respectively; higher than those of the 8th AJCC system (vs. 0.843 and 0.779, respectively). DCA revealed that compared with the 8th AJCC TNM staging system, the TNMG staging system demonstrated superior net prognostic benefit in both the training and validation datasets. CONCLUSIONS: The proposed TNMG staging system could more accurately predict the 3- and 5-year OS rate of gNENs patients than the 8th AJCC TNM staging system.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Gástricas , Humanos , Estadiamento de Neoplasias , Prognóstico , Tumores Neuroendócrinos/patologia , Carcinoma Neuroendócrino/patologia , Neoplasias Gástricas/patologia , Organização Mundial da Saúde
19.
Biol. Res ; 56: 5-5, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1429906

RESUMO

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Assuntos
Animais , Camundongos , Diabetes Mellitus , Nefropatias Diabéticas , Fibrose , NF-kappa B/metabolismo , Caspases , Interleucina-18 , RNA Interferente Pequeno , Piroptose , Glucose , Inflamação
20.
Arch Biochem Biophys ; 727: 109347, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35809639

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) mediated pathway plays a pivotal role in promoting tubulointerstitial inflammation and contributes to the progression in type 2 diabetic kidney disease (T2DKD). As the first identified key pyroptosis executor, gasdermin D (GSDMD) is activated by caspases and might be the key protein to switch apoptosis to pyroptosis. It remains unclear that role of TLR4 on canonical pyroptosis pathway, and whether GSDMD is involved in switching from apoptosis to pyroptosis in the TLR4-related tubular injury in T2DKD. METHODS: Immunohistochemistry staining was used to detect the expression of pyroptosis-related proteins in renal tissues of T2DKD patients. T2DKD models was induced in TLR4 knockout (TLR4-/-) mice through a high-fat diet combined with streptozotocin. Pyroptosis (caspase-1, GSDMD, interleukin 18(IL-18), interleukin 1ß(IL-1ß)) and apoptosis levels (caspase-3, Bax and Bcl-2) were detected by Western blot. HK-2 cells were cultured under high-glucose (HG) conditions as an in vitro model and then challenged with a TLR4-specific antagonist (TAK-242). GSDMD small interfering RNA (siRNA) and overexpression plasmid were transfected into HK-2 cells to down- or up-regulate GSDMD. The pyroptosis and apoptosis rates were determined by flow cytometry. RESULTS: The expression levels of caspase-1, GSDMD, IL-18 and IL-1ß were increased in renal biopsy tissues of T2DKD patients and GSDMD expression was positively correlated with tubular injury. Silencing GSDMD attenuated HG-induced IL-18, IL-1ß, FN and α-SMA, and reduced pyroptotic cells rate in HK-2 cells. Up-regulation of GSDMD inhibited HG-induced expression of Bax and cleaved caspase-3 and reduced apoptosis rate. TLR4 knockout alleviated tubular injury and interstitial macrophages infiltration, improved impaired renal dysfunction, and decreased the expressions of active N-terminal of GSDMD(GSDMD-N), cleaved caspase-1(cl-caspase-1) and cleaved caspase-3(cl-caspase-3) in T2DKD mice. TLR4 inhibition reduced HG-induced pyroptosis and apoptosis level in HK-2 cells, while GSDMD up-regulation increased pyroptosis rate and decreased apoptosis rate. CONCLUSIONS: TLR4 could exacerbate tubular injury and fibrosis via GSDMD-mediated canonical pyroptosis pathway in T2DKD. Activation of GSDMD could inhibit apoptosis and activate pyroptosis, which may involve the potential switch mechanism between TLR4-mediated pyroptosis and apoptosis in T2DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Apoptose , Caspase 1/metabolismo , Caspase 3/metabolismo , Caspases/metabolismo , Células Epiteliais/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/genética , Piroptose , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...